1,3-Dipolar Character of Six-membered Aromatic Rings. Part XXXII. ${ }^{1}$ Derivatives of 1-Aryl-3-imidopyridiniums: Preparation and X-Ray Crystal Structure

By Nicholas Dennis, Alan R. Katritzky,* and Horst Wilde, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ
Enrico Gavuzzo and Alessandro Vaciago, Laboratorio di Strutturistica Chimica del C.N.R. ' Giordano Giacomello,' 00016 Monterotondo Stazione, Roma, and Università di Roma, 00100 Roma, Italy
Various 3 -imidopyridiniums have been prepared. The X-ray structure of 1 -methyl-3-methylsulphonylimidopyridinium confirms the betaine structure.

Having previously studied extensively 1-substituted-3oxidopyridiniums, ${ }^{2}$ we have now investigated analogous 3 -imido-derivatives (a) because superior crystallinity makes them more suitable for X-ray crystallographic study and (b) to investigate possible 1,3-dipolar reactivity.
1-Methyl-3-methylsulphonylaminopyridinium iodide (1) [readily prepared from 3 -methylsulphonylaminopyridine ${ }^{3}$ (4) and methyl iodide] when treated with Amberlite IRA $401(\mathrm{OH})$ resin gives the betaine (7), m.p. $209-210{ }^{\circ} \mathrm{C}(\mathrm{m} / \mathrm{e}$ 186), with an n.m.r. spectrum (Table 1) showing upfield shifts of the pyridine ring protons characteristic for the conversion of a halide into a betaine. ${ }^{4}$ The betaine (7) has previously been detected ${ }^{3}$ in solution and isolated ${ }^{3}$ as the perchlorate salt.
${ }^{1}$ Part XXXI, J. Banerji, N. Dennis, and A. R. Katritzky, J. Chem. Research (S), 1977, 38; J. Chem. Research (M), 1977, 517.
${ }^{2}$ N. Dennis, A. R. Katritzky, and Y. Takeuchi, Angew Chem. Internat. Edn., 1976, 15, 1.
${ }^{3}$ R. A. Jones and A. R. Katritzky, J. Chem. Soc., 1961, 378.
${ }^{4}$ A. R. Katritzky and Y. Takeuchi, J. Chem. Soc. (C), 1971, 874.

Similarly, l-methyl-3-(2,4,6-trinitroanilino)pyridinium iodide (2) [prepared from 3-(2,4,6-trinitroanilino)pyridine ${ }^{5}$ (5) and methyl iodide] furnished 1-methyl-3-

Table 1
Proton n.m.r. spectra of betaines and halides ${ }^{a}$

Proton(s)	Compound			
	$(1)^{\text {b }}$	(2) ${ }^{c}$	(7) ${ }^{\text {b }}$	(8) ${ }^{\circ}$
2	8.70 d	8.69 d	8.15 d	8.35 d
4	8.04 dt *	8.22 dt	7.94 dt	7.64dt
5	8.34 q	8.03 q	7.70q	7.83q
6	8.59d	8.87d	8.06d	8.49 d
NMe	4.41 s	4.33s	4.23 s	4.29 s
$\mathrm{SO}_{2} \mathrm{Me}$	3.29s		2.99 s	
Ph		9.12 s		8.63 s

(2,4,6-trinitrophenylimido)pyridinium (8), m.p. 258$259{ }^{\circ} \mathrm{C}$ (m / e 319). 3-(2-Nitroanilino)pyridine ${ }^{6}$ (6) reacted with methyl iodide to yield the corresponding
${ }^{5}$ M. D. Coburn and J. L. Singleton, J. Heterocyclic Chem., 1972, 9, 1039 .
${ }^{6}$ T. V. Tsaranova, Khim. geterotsikl. Soedinenii, 1965, 909 (Chem. Abs., 1966, 64, 12637d).
quaternary salt (3), m.p. $155-156{ }^{\circ} \mathrm{C}$. However, treatment of 3 -amino-1-(2,4-dinitrophenyl)pyridinium chloride (9) (prepared from 3 -aminopyridine and 2,4dinitrochlorobenzene ${ }^{7}$) with triethylamine yielded 3aminopyridine and 2,4-dinitrochlorobenzene rather than the corresponding betaine (10).

(1) $\mathrm{Y}=\mathrm{NHSO}_{2} \mathrm{Me}$

(3)

(6) Y

(7) $\mathrm{Y}=\overline{\mathrm{N}}-\mathrm{SO}_{2} \mathrm{Me}$
(8) Y

(9)
(10)

Betaines (7) and (8) were both recovered unchanged when heated with various olefinic electron-deficient and electron-rich dipolarophiles, with dimethyl acetylenedicarboxylate they gave resinous products.

We attribute the superior reactivity in 1,3-dipolar addition of 3 -oxidopyridiniums compared to the present 3 -imidopyridiniums to the fact that the former form $\alpha \beta$-unsaturated ketones whereas the latter would lead to $\alpha \beta$-unsaturated imines, a less stable class of compound.

X-Ray Crystal Structure of Betaine (7)

Well-shaped, colourless, monoclinic crystals were obtained by slow evaporation at $5^{\circ} \mathrm{C}$ from methanol-ethanol.

Crystal Data.- $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, M=186.2$. Monoclinic, $a=$ $9.964 \pm 0.003, b=7.438 \pm 0.001, c=11.366 \pm 0.002 \AA$, $\beta=96.46 \pm 0.02^{\circ}, U=837.1 \AA^{3}, D_{\mathrm{m}}=1.475$ (by flotation), $Z=4, D_{\mathrm{c}}=1.47 \mathrm{~g} \mathrm{~cm}^{-3}$. Space group $P 2_{1} / c\left(C_{2 h}^{5}\right)$ from systematic absences ($h 0 l, l=2 n+1 ; 0 k 0, k=2 n+$ 1). Mo- K_{α} radiation, $\lambda=0.71069 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=3.41$ cm^{-1}. Cell parameters were derived from oscillation and Weissenberg photographs and refined by a least-square fit to the measured θ angles for 12 accurately centred reflections.

Three-dimensional X-ray diffraction intensity data from a crystal ca. $1.0 \times 0.9 \times 0.4 \mathrm{~mm}$ were collected on a computer-controlled Syntex P2 2_{1} four-circle diffractometer by the $\theta-2 \theta$ scan technique, by use of graphite-monochromated Mo- K_{α} radiation. In the range $2 \leqslant 2 \theta \leqslant 60^{\circ}$,

[^0] J. prakt. Chem., 1965, 30, 96.
${ }_{8}$ D. W. J. Cruickshank, in ' Computing Methods in Crystallography,' ed. J. S. Rollett, Pergamon Press, Oxford, 1965, p. 114.

2289 reflections with $I \geqslant 3 \sigma(I)$ were selected from the 3342 reflections collected. The intensities of three standard reflections, chosen in different regions of the reciprocal space and measured every 50 reflections, remained essentially constant throughout. Data were corrected for Lorentz and polarization effects, but not for absorption or extinction.
The position of the sulphur atom in the asymmetric unit was found from an unsharpened Patterson synthesis. A Fourier synthesis phased on the sulphur atom produced a satisfactory trial structure. After a first block-diagonal (4×4) least-squares refinement of the positions of the atoms, to which sulphur and carbon form-factors and an overall isotropic temperature factor were assigned, the R value was 0.15 . The chemical species were assigned from chemical evidence and by inspection of the peaks found in a Fourier synthesis. Three further cycles of least-squares refinement were then calculated with individual form-factors and individual thermal isotropic parameters, leading to $R=0.08$.
A difference-Fourier synthesis computed at this stage showed residual electron density in all the positions expected for hydrogen atoms. A final refinement, in which all the non-hydrogen atoms were assumed to vibrate anisotropically and the hydrogen atoms isotropically, lowered R to 0.038 . During the refinement the matrix was diagonalized in two blocks only, one containing all the positional terms and the other the thermal and scale parameters, and the weighting scheme was ${ }^{8} w=\left[a+\left|F_{0}\right|+\right.$ $\left.c\left|F_{0}\right|^{2}\right]^{-1}$. A final difference-Fourier synthesis showed no significant residual electron density $\left[\sigma(\rho)=0.09 \mathrm{e}^{-3}\right]$. A few peaks at the 3σ level could possibly be interpreted as ' bond 'electron density.

Table 2
Final positional parameters ($\times 10^{4}$) with their estimated standard deviations in parentheses

	x	y	z
$\mathrm{~N}(1)$	$2340(12)$	$-2027(10)$	$4864(10)$
$\mathrm{C}(2)$	$2145(12)$	$-836(12)$	$3968(11)$
$\mathrm{C}(3)$	$3192(11)$	$-368(11)$	$3300(11)$
$\mathrm{C}(4)$	$4427(13)$	$-1265(15)$	$3602(15)$
$\mathrm{C}(5)$	$4592(15)$	$-2474(16)$	$4524(17)$
$\mathrm{C}(6)$	$3533(16)$	$-2843(12)$	$5170(15)$
$\mathrm{C}(7)$	$1191(17)$	$-2420(17)$	$5539(16)$
$\mathrm{N}(2)$	$3130(10)$	$840(10)$	$2383(10)$
S	$1921(3)$	$2217(3)$	$2144(2)$
$\mathrm{O}(1)$	$2118(12)$	$3169(12)$	$1066(10)$
$\mathrm{O}(2)$	$588(10)$	$1427(11)$	$2167(11)$
$\mathrm{C}(8)$	$2110(15)$	$3809(15)$	$3302(14)$
$\mathrm{H}(2)$	$13(2)$	$-4(2)$	$38(2)$
$\mathrm{H}(4)$	$51(3)$	$-10(3)$	$32(3)$
$\mathrm{H}(5)$	$55(3)$	$-30(3)$	$48(3)$
$\mathrm{H}(6)$	$35(3)$	$-35(3)$	$59(3)$
$\mathrm{H}(71)$	$4(3)$	$-23(3)$	$51(3)$
$\mathrm{H}(72)$	$12(3)$	$-18(3)$	$61(3)$
$\mathrm{H}(73)$	$13(3)$	$-36(3)$	$58(3)$
$\mathrm{H}(81)$	$29(2)$	$45(3)$	$32(3)$
$\mathrm{H}(82)$	$21(3)$	$32(3)$	$40(3)$
$\mathrm{H}(83)$	$13(2)$	$47(3)$	$32(3)$

Atomic scattering factors for sulphur, oxygen, nitrogen, and carbon were taken from ref. 9 and for hydrogen from ref. 10, and the calculations were carried out on a UNIVAC 1110 computer at Rome University, using the program library of the Laboratorio di Strutturistica Chimica ' Giordano Giacomello.' Atomic co-ordinates are given in

[^1]Table 2, whilst all other relevant data regarding molecular geometry and packing, and the observed structure amplitudes and calculated structure factors, are published in Supplementary Publication SUP 22019 (11 pp., l microfiche),* which includes final anisotropic temperature factors for non-hydrogen atoms, isotropic temperature factors for hydrogen atoms, observed structure amplitudes and calculated structure factors, bond lengths and angles, the least-squares plane of the pyridinium ring with distances of atoms from this plane, and internal rotation angles of the side-chain of the molecule.
Intramolecular bond lengths and angles are shown in Figures 1 and 2, together with the crystallographic numbering used. The estimated standard deviations are in general $0.002 \AA$ and 0.1° for bond lengths and angles not involving hydrogen atoms.

Figure 1 Bond lengths for molecule (7)

Figure 2 Bond angles for molecule (7)
The geometry of the pyridinium ring is significantly different from that reported for pyridine itself. ${ }^{11}$ The presence of the methyl group on $\mathrm{N}(1)$ gives rise to a marked increase of the $\mathrm{C}(2)^{-\mathrm{N}}(1)-\mathrm{C}(6)$ angle (122.6 vs. 116.9°), as expected on the basis of the VSEPR theory. ${ }^{12}$

Interestingly, the expected $C_{2 v}$ symmetry of the ring is destroyed by the presence of the substituent on $C(3)$, which gives rise to (i) a $0.02-0.03 \AA$ lengthening of the $\mathrm{C}(2)-\mathrm{C}(3)$

* For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Perkin II, 1976, Index issue.
${ }^{11}$ G. O. Sørensen, L. Mahler, and N. Rastrup-Andersen, J. Mol. Structure, 1974, 20, 119.
${ }^{12}$ R. J. Gillespie and R. S. Nyholm, Quart. Rev., 1957, 11, 339.
and $\mathrm{C}(3)-\mathrm{C}(4)$ bonds, as compared with $\mathrm{C}(5)-\mathrm{C}(6)$ and $\mathrm{C}(4)^{-C}(5)$, respectively, and (ii) a 4° decrease of the angle $C(2)-C(3)-C(4)$ with respect to the angle $C(4)-C(5)-C(6)$. According to Coulson et al. ${ }^{13}$ the two effects are indicative of extensive conjugation between the substituent and the ring. The rather short $\mathrm{C}(3)-\mathrm{N}(2)$ bond $[1.372(2) \AA]$ is consistent with this result. The dihedral angle between the least-squares plane of the pyridinium ring and the plane through atoms $\mathrm{C}(3), \mathrm{N}(2)$, and S is 13.9°, and the dihedral angle between the latter and the plane through atoms $\mathrm{N}(2)$, S, and $C(8)$ is 70.6°.

The sulphur-nitrogen and sulphur-oxygen bond distances are in good agreement with literature values. ${ }^{14}$ It is worth remarking that one of the two oxygen atoms, $\mathrm{O}(2)$, has a close contact with a $\mathrm{C}-\mathrm{H}$ group of the pyridinium ring, $\mathrm{C}(2)-\mathrm{H}(2)$. The $\mathrm{O}(2) \cdots \mathrm{C}(2)$ distance $[2.953(2) \AA]$ is in agreement with values reported by Donohue for a number of similar interactions. ${ }^{15}$

EXPERIMENTAL

The m.p.s were determined with a Reichert apparatus. Spectra were recorded with a Perkin-Elmer model 257 grating spectrophotometer, a Hitachi-Perkin-Elmer RMU 6 E mass spectrometer, a Unicam SP 800A spectrophotometer, and a Varian HA 100 n.m.r. spectrometer.

1-Methyl-3-(2-nitroanilino)pyridinium Iodide (3).-3-(2Nitroanilino) pyridine (6) ($1.08 \mathrm{~g}, 0.005 \mathrm{~mol}$) [m.p. $95-96{ }^{\circ} \mathrm{C}$ (lit., $\left.\left.{ }^{6} 95-96{ }^{\circ} \mathrm{C}\right)\right]$ and $\mathrm{MeI}(2.2 \mathrm{~g}, 0.015 \mathrm{~mol})$ in tetrahydrothiophen 1,1-dioxide (25 ml) were heated $\left(60^{\circ} \mathrm{C}\right)$ for 72 h . Evaporation of solvent in vacuo ($130^{\circ} \mathrm{C}$ at 7 mmHg) gave the quaternary salt (3) ($1.25 \mathrm{~g}, 70 \%$) as yellow needles (EtOH), m.p. $155-156{ }^{\circ} \mathrm{C}$ (Found: C, 40.1; H, 3.5; N, 11.6. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{IN}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 40.4 ; \mathrm{H}, 3.4 ; \mathrm{N}, 11.8 \%$).

1-Methyl-3-(2,4,6-trinitroanilino)pyridinium Iodide (2).3 -(2,4,6-Trinitroanilino)pyridine $[1.5 \mathrm{~g}, 0.005 \mathrm{~mol}, \mathrm{~m} . \mathrm{p}$. $173{ }^{\circ} \mathrm{C}$ (lit., ${ }^{5} 173^{\circ} \mathrm{C}$)] and MeI in propan-1-ol (50 ml) were heated under reflux $\left(97{ }^{\circ} \mathrm{C}\right)$ for 24 h . After cooling, the red precipitate was collected and crystallised from EtOH to give the iodide (2) ($1.15 \mathrm{~g}, 70 \%$) as red needles, m.p. $200{ }^{\circ} \mathrm{C}$ (Found: C, 32.6; H, 2.4; N, 15.9. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{IN}_{5} \mathrm{O}_{6}$ requires C, 32.2; H, 2.3; N, $15.7 \%) ; \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 4.31\left(\mathrm{~N}^{-\mathrm{CH}_{3}}\right)$.

1-Methyl-3-(2,4,6-trinitrophenylimido)pyridinium (8).The quaternary salt (2) ($0.9 \mathrm{~g}, 0.002 \mathrm{~mol}$) in $\mathrm{MeCN}(20 \mathrm{ml})$ was treated with $E t_{3} \mathrm{~N}(1 \mathrm{~g}, 0.01 \mathrm{~mol})$ at room temperature for 12 h . The filtered product crystallised from EtOH to give compound (8) ($0.6 \mathrm{~g}, 90 \%$) as red plates, m.p. 258 $259{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 45.0; H, 3.2; N, 21.5. $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires C, $45.2 ; \mathrm{H}, 2.8 ; \mathrm{N}, 21.9 \%$); $m / e 319$.

1-Methyl-3-methylsulphonylaminopyridinium Iodide (1).-3-Methylsulphonylaminopyridine ($3.5 \mathrm{~g}, 2.03 \times 10^{-2} \mathrm{~mol}$) [m.p. $140{ }^{\circ} \mathrm{C}$ (lit., ${ }^{3} 140-141{ }^{\circ} \mathrm{C}$)] and MeI ($6 \mathrm{~g}, 4.2 \times 10^{-2}$ $\mathrm{mol})$ were heated under reflux in dry $\mathrm{MeOH}(20 \mathrm{ml})$ for 5 h . The cooled yellow solution deposited the quaternary salt (1) $(4.2 \mathrm{~g}, 65.9 \%)$ as colourless plates from MeOH , m.p. $209-210{ }^{\circ} \mathrm{C}$ (Found: C, 26.9; H, 3.3; N, 8.7. $\mathrm{C}_{7} \mathrm{H}_{11^{-}}$ $\mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, 26.8; H, 3.5; N, 8.9\%); $\nu_{\text {max. }}$ (Nujol) 1630 , 1590 , 1503 , 1464 , 1380 , 1350 , 1317 , 1265 , 1160 , $980,955,867,809$, and $788 \mathrm{~cm}^{-1}$.

1-Methyl-3-methylsulphonylimidopyridinium (7).-The
${ }^{13}$ A. Domenicano, A. Vaciago, and C. A. Coulson, Acta Cryst., 1975, B31, 221.
${ }^{14}$ M. Alléaume, A. Gulko, F. H. Herbstein, M. Kapon, and R. E. Marsh, Acta Cryst., 1976, B32, 669.
${ }^{15}$ J. Donohue, in 'Structural Chemistry and Molecular Biology,' ed. A. Rich and N. Davidson, Freeman, San Francisco, 1968, p. 443.
quaternary salt (1) ($\left.15 \mathrm{~g}, 4.78 \times 10^{-2} \mathrm{~mol}\right)$ in 200 ml water was treated with Amberlite IRA $401(\mathrm{OH})(250 \mathrm{~g})$ to give the betaine (7) as colourless plates ($7.22 \mathrm{~g}, 81.2 \%$), m.p. 209-210 ${ }^{\circ} \mathrm{C}$ (from MeOH) (Found: C, 44.8 ; H, 5.4; N, 15.3. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 45.1 ; \mathrm{H}, 5.4 ; \mathrm{N}, 15.1 \%$); $\nu_{\max .}$ (Nujol) $1600,1570,1380,1337,1321,1245,1195$, $1160,1100,1030,985,960,830,815,798,761$, and 715 $\mathrm{cm}^{-1} ; m / e 186$.

3-Amino-1-(2,4-dinitrophenyl)pyridinium chloride (9).3 -Aminopyridine ($1.88 \mathrm{~g}, 0.02 \mathrm{~mol}$) and 2,4-dinitrochloro-
benzene ($4.05 \mathrm{~g}, 0.02 \mathrm{~mol}$) in HCONMe 2 were heated at $20^{\circ} \mathrm{C}$ for 20 h . The collected precipitate was washed with $\mathrm{HCONMe}_{2}(5 \mathrm{ml})$, and dried to give the required chloride (9) ($5.6 \mathrm{~g}, 95 \%$) as yellow needles, m.p. $240^{\circ} \mathrm{C}$ (lit., ${ }^{7} 238-$ $240{ }^{\circ} \mathrm{C}$) (Found: C, 44.6; H, 3.3; N, 18.7. Calc, for $\left.\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}_{4}: \mathrm{C}, 44.5 ; \mathrm{H}, 3.1 ; \mathrm{N}, 18.8 \%\right)$.

We thank the Karl Marx University, Leipzig, for leave of absence (to H. W.).
[6/1934 Received, 15th October, 1976]

[^0]: ${ }^{7}$ Von W. König, M. Coenen, W. Lorenz, F. Bahr, and A. Bassl,

[^1]: ${ }^{9}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
 ${ }_{10}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.

